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A numerical and experimental study is described for the two-dimensional steady flow 
through a uniform cascade of normal flat plates. The Navier-Stokes equations are 
written in terms of the stream function and vorticity and are solved using a second- 
order-accurate finite-difference scheme which is based on a modified procedure to  
preserve accuracy and iterative convergence a t  higher Reynolds numbers. The 
upstream and downstream boundary conditions are discussed and an asymptotic 
solution is employed both upstream and downstream. A frequently used method 
for dealing with corner singularities is shown to be inaccurate and a method for 
overcoming this problem is described. Numerical solutions have been obtained for 
blockage ratio of 50% and Reynolds numbers in the range 0 < R < 500 and results 
for both the lengths of attached eddies and the drag coefficients are presented. The 
calculations indicate that the eddy length increases linearly with R, a t  least up to 
R = 500, and that the multiplicative constant is in very good agreement with the 
theoretical prediction of Smith (1985a), who considered a related problem. In the 
case of R = 0 the Navier-Stokes equations are solved using the finite-diffcrcnce 
scheme and a modification of the boundary-element method which treats the corner 
singularities. The solutions obtained by the two methods are compared and the 
results are shown to be in good agreement. An experimental investigat'ion has been 
performed a t  small and moderate values of the Reynolds numbers and there is 
excellent agreement with the numerical results both for flow streamlines and eddy 
lengths. 

1. Introduction 
The problem of steady viscous incompressible flow past bluff bodies has over a long 

time received much attention, both theoretically and numerically. I n  spite of the 
many numerical methods and calculations on flow past a circular cylinder, accurate 
results have been obtained only for Reynolds number R(= Udlv, where U is the 
uniform speed relative to the cylinder at large distance, d the diameter of the cylinder 
and v the kinematic viscosity of the fluid) up to  about 600, see Fornberg (1985). He 
found that the wake bubble (region of attached or recirculating flow) has eddy length 
L K R, with width W oc Ri up to R = 300 and beyond that W K R. Smith (1979) 
developed an asymptotic theory which is based on an extension of KirchhoiYs (1869) 
free-streamline solution which agrees with Fornberg's results up to R w 300 only, and 
Smith (1985 b )  and Peregrine (1985) have performed theoretical work which gives a 
fresh interpretation of Fornberg's results. There are several differences between the 
theories of Smith and Peregrine, some of which are a matter of interpretation, and 
these are unlikely to be resolved without further analysis and computational work. 
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Hudson & Dennis (1985) investigated numerical solutions of the Navier-Stokes 
equations for steady laminar flow of a viscous incompressible fluid past a normal flat 
plate rather than a circular cylinder. They were able to obtain accurate numerical 
results for R up to 20 only because of the difficulty in resolving the singularity a t  the 
edges of the plate. Their results for the eddy length were in excellent agreement with 
the observations of Prandtl & Tietjens (1934) and Acrivos et al. (1968). However, 
although the eddy length grows linearly in agreement with Smith (1979, 1985b) and 
Peregrine (1985), the constants of proportionality are significantly different. Castro, 
Cliffe & Norgett (1982) and Castro & Jones (1987) have investigated the steady 
laminar flow in a channel past a normal flat plate with a downstream splitter plate, 
for a blockage ratio of 20 %, and found that the bubble length increases linearly with 
the Reynolds number, up to R = 500. Acrivos et al. (1968) performed experiments on 
flow past a variety of isolated bluff bodies and confirmed that the length of the 
recirculating bubble increases linearly with the Reynolds number. However, they 
reported also that the widths of their bubbles attained a limit O( 1 )  as R increases, in 
accordance with the earlier predictions of Acrivos et al. (1965). This result has been 
disputed by Smith (1979, 1985b), Fornberg (1980, 1985), and Peregrine (1985), all of 
whom suggest that the width increases as R increases. 

In a series of papers Acrivos bt Schrader (1982), Milos & Acrivos (1986) and Milos, 
Acrivos & Kim (1987) have studied the related problem of laminar flow over a 
backward-facing step on one side of a two-dimensional channel. They have studied 
both the boundary-layer equations and the full Navier-Stokes equations ; with entry 
profiles which are parabolic, uniform, and one that simulates uniform flow over a 
boundary layer shed from the step, and results have been obtained over a wide range 
of values of A ,  the ratio of the upstream channel half-width to the step height. The 
general conclusion they reach is that steady solutions are not always possible. Where 
they are, the eddy length increases with R for small values of h but for large values 
of I\ the limit with increasing R for the non-dimensional length of eddy is O(1). Smith 
(1985a) studied this problem both theoretically and numerically and found that for 
all blockage ratios the length of the wake bubble continued to increase with R. 

Although some agreement between theoretical, numerical and experimental 
results exists, there is a need for further work in all these aspects of this fundamental 
and classical problem. In this paper we investigate the flow of a uniform stream past 
a geometrically simple cascade consisting of an infinite array of identical flat plates 
of finite width which are normal to the flow direction. The steady-state Navier-Stokes 
equations are solved using a finite-difference technique in an infinite region with 
boundary conditions of uniform flow being applied at infinity in both the upstream 
and downstream directions. It should be noted particularly that in most previous 
numerical work the boundary conditions have been applied a t  the station where the 
flow leaves the cascade and at  large distance downstream, and that the flow leaving 
the cascade has been assumed to  be: (i) parabolic, (ii) uniform, or (iii) uniform above 
a simulated boundary layer of specified thickness discharging over the step. These 
models do no more than approximate the physical problem of a uniform upstream 
flow passing through a cascade, and in this paper we illustrate some of their 
inadequacies. 

The fluid flow through a cascade of bluff bodies is of fundamental importance for 
two reasons. First, the resultant predictions relate to the performance of the cascade 
itself, providing a model for flow past compressor and turbine blades, for many types 
of heat exchanger and for other interactive body configurations. In  practice, the 
attached flow behind the cascade may have severe consequences for heat transfer and 
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drag, and an understanding of the flow and of the dependence of bubble lengths on 
Reynolds number is of immediate concern. Secondly, the cascade configuration 
provides valuable insight into quite fundamental properties of flow. The main 
properties are attained when the cascade becomes widely spaced. Smith (19854 
established a theoretical basis for understanding the separated flow structure 
produced by the cascade configuration and there is special interest in relating 
experimental and numerical studies to his theory, 

In a numerical treatment of flow past a cascade of normal plates, difficulties arise 
in applying boundary conditions near the plate edges. The problem has been 
discussed in detail by several authors (see Fornberg 1980; Dennis &, Hudson 1980; 
and Ingham 1983). The sudden discontinuity in conditions near the edge of the plate 
gives rise to a singularity in the vorticity and this is handled in our treatment by 
using the appropriate form of the analytical solution in this vicinity following 
Moffatt (1964). In dealing with the corner singularity a method which has been 
frequently used is shown to be inaccurate. It is very important that the solution in 
the vicinity of the singularity is accurately obtained as errors introduced are swept 
downstream and may severely affect such quantities as the length of the attached 
eddies. Also, we adopt asymptotic solutions both upstream and downstream so that 
the numerical integrations need be carried out over a finite region only. We have 
obtained numerical solutions in the range 0 < R < 500 for the cascade with 50% 
blockage ratio in which plate and gap widths are equal. 

When the Reynolds number of the flow is zero, the equations of motion reduce to 
the biharmonic equation. This has been solved using a modification of the boundary- 
element method which treats the corner singularities. The finite-difference and 
boundary-element solutions are compared and the results shown to be in good 
agreement. 

An experimental investigation has been performed for flow through a cascade of 
normal flat plates with equal plate and gap widths. At  small and moderate values of 
the Reynolds numbers the flow is symmetrical and the experimental results compare 
well with the present numerical predictions and the theoretical results of Smith 
( 1 9 8 5 ~ )  who considered a related problem. 

2. Basic equations 
The cascade is assumed to consist of an infinite number of flat plates which are of 

infinitesimal thickness in the X-direction, of uniform width 2H, in the Y-direction 
and of infinite extend in the Z-direction. The plates occupy the plane X = 0 with 
edgesat Y=H,+2nHCand Y=-Hw+2nH,, w h e r e n = O , f l , + 2 ,  ...; H ,  and 
H, are the half-widths of plate and plate plus gap, respectively (see figure 1). At large 
distances from the cascade the fluid is assumed to be moving with constant speed U 
in the positive X-direction and because of symmetry in the Y-direction we need 
consider only two-dimensional flow in the region - 00 < X < 00,  0 < Y < H,. In 
terms of the non-dimensional coordinates x = X / H ,  and y = Y/H, ,  the stream 
function $ and vorticity w satisfy 
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FIGURE 1. The overall cascade flow structure. 
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FIGURE 2. The geometry of the solution domain. 

and the Navier-Stokes equations take the non-dimensional form 

vz+ = -0, ( 2 . 3 ~ )  

(2.3b) 

where R = 2H, U/v is the Reynolds number, v kinematic viscosity, and all lengths, 
velocities and pressure have been non-dimensionalised with respect to H,, U and pu2 
respectively, where p is the fluid density assumed constant. The boundary conditions 
(see figure 2) are 

(2.4) 

( 2 . 5 ~ )  

(2.5b) 

+ = O ,  w = O  on y = O ,  - ~ o o x z ~ ,  (2.6a) 

+ = p ,  o = o  on y = p ,  - ~ < X < C Q ,  (2.6b) 
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where p = H,/H,,  and 0- and 0+  represent the left- and right-hand sides of the 
plate, respectively. 

For viable computation we must limit the length (say, x L < z < x R )  of the 
computational region without introducing significant error into the computed length 
of the attached eddies. As the Reynolds number is increased the attached eddy 
behind a plate grows in length, and the finite value x = xR a t  which boundary 
condition ( 2 . 5 ~ )  may be applied has to be taken at a sufficiently large distance from 
the plate. Hence we apply the transformation 

[ = l n ( l + x ) ,  (2.7) 

for x > 0 and the ( 2 . 3 ~ )  and (2 .3b)  become 

( 2 . 8 ~ )  

(2.8b) 

for 6 > 0. The elliptic partial differential equations (2 .3)  and (2.8) are solved using a 
finite-difference scheme similar to that described by Dennis & Hudson (1978) and 
Dennis & Smith (1980).  

A mesh system is set up with mesh size in the y-direction k = 1/N, where N is a 
predetermined positive integer. In the x-direction the mesh size is h, = ER/M for 
6 > 0 and h, = e * R -  1 for x < 0 where ER( = In ( 1  + 5,)) is the value of [ at which the 
infinity boundary condition ( 2 . 5 ~ )  is applied, and M is a positive integer. Thus the 
mesh size in the x-direction is constant for x < 0 and, although variable for x > 0, 
the size of the first mesh in the region x > 0 is the same as that in the region x < 0. The 
boundary condition (2 .5b)  is applied at xL = -Ph,  where P is a predetermined 
positive integer. Equations (2 .3)  and (2 .8)  are put into finite-difference forms for 
x < 0 and E > 0, respectively. 

We determine the vorticity on the plate at points other than the edge by using the 
method of Woods (1954),  which gives 

where the subscript 1 denotes a value a t  the first internal grid point adjacent to the 
boundary grid point B and h is the distance between I and B. There are two values 
of the vorticity at  each boundary grid point on the plate, one to the right and one 

(2 .10a)  to the left : 

w ( O - , y ) = - 3 + ( - h , y ) / h 2 - & ( - h , y ) ,  O < y  < 1. (2.10b) 

In order to minimize the size of the domain of integration we use appropriate 
asymptotic solutions of the Navier-Stokes equations for large positive and negative 
values of 2. Following Wilson (1969) and Bramley & Dennis (1982) we write 

@(x, Y) = Y +f(Y) e-"$, (2.11 a )  

4Z, y) = 9(y )  e-az. (2.11 b )  

~ ( o + ,  Y) = - 311.(h, y ) / h 2  -&(h, y), 0 d Y < 1, 

Substituting these expressions into ( 2 . 3 ~ )  and (2 .3b)  and solving them we obtain 

a = 2 [ - ~ - ( ~ 2 + ( 4 n ~ ) 2 ) + 1 =  a,, say, for 5 < 0, ncN ( 2 . 1 2 ~ )  
10-2 
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a = *[ -R + (R2 + ( 4 n ? ~ ) ~ ) i ]  = a,*, say, for x > 0, n E N (2.12b) 

( 2 . 1 3 ~ )  

g(y) = ;aRCnsin (my), (2.13b) 

with C, a real constant. From (2 .12)  and (2 .13)  we deduce that the asymptotic 
boundary conditions to be employed are 

f(y) = Cn sin (nny) 3 

( 2 . 1 4 ~ )  

as x++OO, (2.14b) 

where the upstream boundary condition ( 2 . 1 4 ~ )  is applied a t  xL = -PhL. In terms of 
6 ,  (2 .14b)  becomes 

(2 .15)  

and the downstream boundary conditions (2 .15)  are applied a t  6 = tR. This is in 
contrast with Milos et al. (1987), who use the condition a2@/lax2 = 0 as x++ co. 

One grid point that needs special attention is the edge of the plate (S  in figure 2), 
where the vorticity is singular. We handle this in terms of values a t  the three 
neighbouring grid points A ( h ,  l),  B( -h, 1 )  and C(O,l+ k )  so that finite-difference 
representations of (2 .3)  and (2 .8)  do not involve the value of w a t  S .  

3. Numerical technique 
First we find the solution for a given mesh size h and k with the positions of the 

infinity boundaries a t  x = - 10 and 6 = 2 for Reynolds number zero. This is achieved 
by writing the governing partial differential equations ( 2 . 3 )  and (2 .8)  in finite- 
difference form using the modified central-difference formulation as described by 
Dennis & Hudson (1978). The choice of the scale and mesh size in the x-direction 
means that a t  x = 0 and y 3 1 the mesh is square and hence there are no difficulties 
encountered in writing down the finite-difference equations on this line. An initial 
guess for the vorticity and stream function is made a t  all mesh points a t  which these 
quantities are unknown ; usually we set these values to be identically zero. We sweep 
through the discretized region updating first the stream function starting at  y = 
/3- k ,  6 = 2 - h and proceed in the negative x-direction until we reach x = - 10 + h. 
This process is repeated along the lines y = ,8-2k, ,8- 3k, . . , , y = k and the whole 
process is repeated for the vorticity except that the points on x = 0, 0 6 y 6 1 and 
points A ( h ,  l ) ,  B( - h ,  1 )  and C(0, 1 + k )  (see figure 2 )  are omitted from the sweep. The 
values of the vorticity on z = 0, 0 d y < 1 are determined using (2.10). 

In order to determine the values of the vorticity at points A ,  B and C we employ 
two methods. Method I is that described by Dennis & Smith (1980), where they write 
the vorticity in finite-difference form, for example a t  the point C(O,l+ k )  in terms of 
the vorticity and stream function a t  points (0, l + k ) ,  (h,  l ) ,  ( -h ,  1 ) ,  (h,  1 + 2 k )  and 
( -h ,  1 + 2 k )  rather than those values a t  the points (0 ,1+ k ) ,  (h ,  1 + k ) ,  ( - h ,  1 + k ) ,  
( 0 , l )  and (0,1+ 2k) .  The infinite value of vorticity a t  (0, I )  is then avoided. Both Dennis 
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& Smith (1980) and Bramley & Dennis (1984) have used this technique successfully 
in dealing with problems involving singularities. 

Method I1 of dealing with the singularity in vorticity incorporates the theory of 
Moffatt (1964) (see, for example, Holdstein & Paddon 1981 ; Bramley & Dennis 1984; 
and Badr et al. 1985). Near S, (2.3) reduces to the biharmonic equation, V4+ = 0, and 
we look for a solution near S in the form 

+ = r.1F(0), (3.1) 

where ( r , 0 )  are polar coordinates as shown in figure 2. The solution of (2.3) which 
satisfies the boundary conditions (2.4) is 

@ .., rt($4*cos$e+A* cos+e-B*sin$O-B*sin$8) 

+ r2C*( 1 - cos 20) 

+ rz( -iD* cos %8 + D* cos t0 - E* sin Q0 + E* sin $8) 

+ r3( -F* cos 38 +F* cos 0-frG* sin 30+ G* sin 0) + . . . , (3.2) 
and therefore 

w - r-f( - 2A* COB $3 + 2B* sin 40) - 4C* + ri ( - 6D* cos 48 - 6E* sin $0) 

+ r( -8F* cos 0-8G* sin@) + . . . , (3.3) 

where A*, B*, C*, D*, E*, F* and G* are constants to be determined. 

and G* in (3.2) and (3.3) are identically zero. Then 
When R = 0 the flow is symmetrical about t9 = 0 and thus the constants B*, E*, 

I,+ N @(A = 1  * cosP+A* cosg) +r2C*( 1 - cos 28) + ri ( -@* cos&9+ D* cosp)  

+ r 3 ( - F * c o s 3 0 + F * c o s 0 ) + . . . ,  (3.4) 

w - -2A* r - f c o s ~ - 4 C * - 6 D * r ~ c o s ~ - ~ * r c o s 8 +  ..., (3.5) 

and we note that the first and third terms of (3.5) are identically zero on the plate 
and hence the vorticity is finite on the plate. 

We have employed several different techniques in order to  find the constants A*, 
C* in (3.4) and (3.5) but found the following method to  lead to  the quickest 
convergence as the mesh size tends to zero. We determine A* and C* for R = 0 from 
values of the stream function a t  (0,l  f k) and vorticity a t  (0,l  -k). We then 
determine from (3.5) the vorticity at the points (h,  l),  ( -  h, 1) and (0, 1 + k). On the 
plate, (3.5) gives 

w - -4C* + 8F*r+.  . . ; (3.6) 

hence W ( 0 , l )  = 2w(O,l - k ) - w ( 0 ,  1 -2k). (3.7) 

Having now obtained an update of all the vorticity and stream-function values, 
another complete sweep is made in exactly the same way as that described above and 
this is continued until convergence is achieved. It is found that although the 
numerical scheme is diagonally dominant, the vorticity on the boundary has to  be 
under-relaxed ( x 0.2) in order to obtain a convergent solution; but an over- 
relaxation factor (x 1.2) has been used for both vorticity and stream function in the 
interior of the computational domain. 

Having obtained a convergent solution for R = 0 with specified mesh sizes h and 
k, the positions of the infinity boundary conditions are varied until they are 
considered to  be sufficiently far away from the cascade as described in $6.  This 
procedure was repeated for several values of the mesh size h and k. 
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Once a convergent result had been obtained for a fixed mesh size a t  R = 0 the 
results a t  R = 1 were obtained using as a first guess the results from R = 0. In  this 
case, however, the singularity must be dealt with slightly differently by method 11, 
because the flow is no longer symmetrical about x = 0. We take the first three non- 
zero values of the constants in (3.2) and (3.3), namely A*, B* and G*, and determine 
these from the knowledge of the stream function a t  the point (0, 1 + k) and vorticity 
a t  (0- , 1 -k) and (0+ , 1 -k). On the plate, (3.5) gives 

o(0-, y) - 2B*r-t-44C*, (3.8) 

w(O+ ,y )  - -2B*r-;-4C*, 
leading as y e  1 - to 

(3.9) 

w ( O - ,  y) = 3.25725 w ( O - ,  y- k) -2.25725 w ( O - ,  ~ - 2 k ) ,  (3.10) 

0(0+ ,  y) = 3.25725 0(0+,  y-k) -2.25725 w ( O + ,  Y-2k). (3.11) 

Having obtained convergent results for R = 1, numerical results were obtained for 
R = 5, 10,20, 50, 100,200 and 500. Convergence is tested in each case by evaluating 

u = El1-Oo (n+l)/Uom) ( I 9  

where summation is over all grid points and the superscripts refer to the number of 
iterations. When u is below some pre-assigned tolerance, E ,  the process is taken as 
convergent. The value of E was varied but was found to be sufficiently small for 
the results presented in this paper to  be correct to  the number of decimal places 
quoted. Further, the boundary conditions ( 2 . 1 4 ~ )  and (2.15) were initially satisfied 
at  predetermined positions xL and xR (=  etR- l ) ,  respectively; the magnitudes of x, 
and xR were then increased until there was no significant change in the solution near 
the plates. It was found that xL and xR should be roughly the same at small values 
of the Reynolds number, whereas xL can be taken much smaller than xR a t  high 
values of the Reynolds number in order to obtain accurate numerical results. 

4. Boundary-element-method solution for R = 0 
In  order to check the finite-difference scheme a boundary-element method (BEM) 

solution was obtained for R = 0. I n  this case (2.3) reduces to the biharmonic 
equation, 

which can be solved using Green’s second theorem with $ replaced by V2$, 
(4.1) V 4 $  = 0, 

IY i w 2 4 ) f  - ~ $ 1  dy = J1, w 7 4 $  - ~ ~ 7 2 4 1  d ~ ,  

J: [$(vw - +’VVI dy = S, w 4 $  - ~ 2 4 ~ ~ 1  m. 

(44 

where a prime indicates differentiation with respect to  the unit outward normal, $ 
satisfies (4.1), 4 is an arbitrary function, y represents the boundary contour, and D 
the surface enclosed by y, see figure 2. The functions $ and 9 can be transposed to 
give 

(4.3) 

Subtraction of (4.3) from (4.2) gives 

[$(V2$)’ - VV2+ + V2$# - (V2$-)’$] dy = [$V4+ -+V4$] dQ. (4.4) 
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V4@(b) = S(a - b), (4.5) 
Choosing $ to  satisfy 

where a is the point in SZ at which @ is to be evaluated, b a variable point in 52, and 
&(a - b) the three-dimensional Dirac delta function, gives 

( 4 . 6 ~ )  

where a(a)  is a space function which takes the following values: 

a(a) = 2 R  if a ~ Q - y ,  

a(a) = n: if a E y ,  y continuous at a, 

a(a)  = ‘ internal angle ’ if a E y ,  y discontinuous a t  u. 

(4.6b) 

(4-7 1 

I 
Equation (4.6) yields the fundamental solution for the biharmonic equation 

$(la-bl) = &z-b)2(log (la-bl)-l}. 

It remains only to  find all the values of + and its derivatives on the boundary, y ,  in 
order to calculate $ anywhere in SZ. Employing numerical techniques yields a series 
of equations which are successive approximations to (4.6 a). Discretizing the 
boundary into straight line elements, y,, and approximating the stream function 
and its derivatives by piecewise smooth constant functions yields 

where @j, $;, wi and wj represent the approximations to ~, @‘, w and w’ on the 
elementj. If a is now chosen in turn to be the midpoint of each element yt, we obtain, 

where 

(4.9) 

( 4 . 1 0 ~ )  

(4.10 b)  

(4 .10~)  

(4.lOd) 

where Stj is the Kronecker delta, qt is the midpoint of element i. Equation (4.9) can 
be re-expressed, in matrix form, as 

J V + K V ‘ + h + M d  = 0, (4.11) 

where v/  = [@I, $2, * .  . ,@?&IT, etc. 

The integrals represented by (4.10) can be evaluated analytically as shown by Ingham 
& Kelmanson (1984). Equation (4.11) represents n equations in 4n unknowns and 
normally there will be only 2n boundary conditions given by the problem. Thus use 

is made of the equation V2$ = -w,  (4.12) 
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Jw+Ko' = 0, (4.13) 

where the matrices J and K are the same as those in (4.10) and the analysis used to 
obtain this equation is similar to that used to derive (4.11). 

Because of the re-entrant corner singularity a t  S ,  numerical results using the above 
formulae are very inaccurate (see Ingham & Kelmanson 1984), and we subtract the 
singularity part of the stream function to  leave a smooth solution, taking 

@ = 9 + x ,  (4.14) 

g(r ,  0) = r t ( ~ * c o s ~ e + A * c o s ) e ) + r 2 C * ( i  - c o s ~ ~ ) ,  (4.15) with 

where x satisfies (4.1) and contains no singular terms. The problem is then redefined 
and solved in terms of x with g being added once x has been found. The values of the 
constants A* and G* are unknown, and must be calculated as part of the solution. 
This normally gives 2n + 2 unknowns with 2n equations and to close the system the 
unknowns in terms of x nearest the singular point S are set to zero and said to be 
dominated by the singularity. By numbering the boundary segments from the 
singular point S in an anticlockwise fashion so that the boundary segments 1 and n 
are those which contain points (0 , l )  and (0- , 0) ,  respectively, since a,b and y?' are the 
specified boundary conditions, this means that the variables o1 and w2 are set to zero. 

Care must be taken to add the singular terms as part of the global solution, as 
adding them to the boundary solution leads to instability. The asymptotic 
expansions of boundary conditions ( 2 . 1 4 ~ )  and (2.14b) are used a t  x = xL < 0 and 
x = xR > 0 to increase the accuracy of the boundary conditions where xL and xR are 
the values of 2 a t  which ( 2 . 1 4 ~ )  and (2.14b) are applied, respectively. 

5. The laboratory experiments 
A series of laboratory experiments has been carried out as a test of the numerical 

solutions and as a means of distinguishing these from other solutions obtained for 
this flow. The cascade, somewhat like a plane rake or comb, was cut from a thin 
aluminium plate with square-ended teeth of uniform width 0.01 m separated by 
uniform gaps of 0.01 m. The spine of the comb was supported vertically and at  right 
angles to the axis of the tank on a light trolley which could be driven along the tank 
a t  steady speed by a 6 V permanent magnet d.c. motor with pulse width modulated 
controller. The tank was of length 1 m, width 0.15 m, and was filled to a depth of 
approximately 0.12 m using either water or ethylene glycol, thereby providing both 
a range of driving speeds and of liquid viscosity, and a corresponding range of 
Reynolds numbers of the motion. 

In practice the range of R available between the minimum voltage for steady 
motion and that a t  which the first signal of unsteadiness appeared in the flow is about 
0.1 to 25. Only the teeth of the comb project into the liquid, reaching to 
approximately 0.005m above the lower boundary, while there is a clearance of 
approximately 0.01 m on each side between tank wall and neighbouring tooth. Thus, 
there are seven teeth across the tank making up a plane cascade with 50% blockage, 
and the flow is recorded about the middle three teeth a t  midheight in the tank as the 
cascade is travelling a t  uniform speed in the centre of its run. 

Flow past the comb teeth is visualized by seeding the entire fluid with small 
polyester spheres used in Dulux emulsion paints. These spheres are coated with 
titanium oxide and have mean diameter 17 pm, 71 % of mass in the range 10.5 to  
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23.7 pm, and 96% of mass in the range 1.3 to 33.7 pm; they settle out slowly, but 
can be stirred back into suspension before each group of runs to provide a good 
distribution after the stirring motion has decayed. A decay time of about twenty 
minutes was left between runs to ensure that residual motion in the tank had been 
reduced to  a low level. These small white spheres are illuminated using light from 
good quality projectors with slits in their focal planes focused into thin horizontal 
sheets of light of between 0.002 and 0.005 m thickness in the working section. Two 
opposed projectors were required to obtain records adequately illuminated both 
upstream and downstream of the cascade, and these were directed a t  roughly 45" 
towards the cascade from either side of the tank with one projector upstream and one 
downstream at the moment of record. The recording camera was mounted on the 
trolley and looked vertically down the downstream face of the centre tooth, and the 
thickness of light sheet in the working section was chosen to illuminate just sufficient 
particles for a clear record in an exposure time of between 4 and 15 s according to the 
speed at which the cascade travelled. Care was needed to  minimize glare in the strong 
illumination, and all metal surfaces were painted matt black. 

The platform was driven by a rubber covered roller on square-section aluminium 
tubes which could be levelled and were attached above the sides of the tank. At low 
speeds there was a small tendency towards oscillations of small amplitude and 
relatively high frequency. These are, however, very clearly visible in the 
photographic record when present and it is apparent when they are contaminating 
the record. 

6. Results and discussion 
Numerical results were obtained using the modified central-difference scheme for 

/3( = H,/H,)  = 2,O d R < 500, h = k = $, 8, &, 8, & and &, and for several positions 
a t  which the infinity boundary conditions were specified. One of the main aims of the 
present study is to find an accurate numerical method for solving the flow through 
a cascade with boundary singularities, and we have computed only the case = 2 
which corresponds to  a relatively large blockage ratio (l /p = 0.5). It is hoped that 
other blockage ratios will be considered in future work in order to investigate the 
existing theories, numerical and experimental results. 

At R = 0 results were obtained by the finitc-difference method, using both 
methods I and 11 to deal with the singularity at the point S, and the BEM. I n  this 
case we pay particular attention to the constant A* which occurs in the expansions 
(3.4) and (3.5), since the first term of (3.5) is the dominant one which gives the 
vorticity in the neighbourhood of S. Values of A* were 2.452, 2.490, 2.503 with mesh 
sizes h = k = &,, &, &,, respectively, using method 11; and 2.516,2.518,2.519 with the 
mesh sizes $, $, & by using the BEM. The corresponding repeated h2-extrapolation 
values for A* obtained by method I1 and the BEM are both 2.52. All the results of 
the BEM were found to be graphically indistinguishable from the results obtained 
using method I1 as h,  k + 0 .  The results of method I, however, did not appear to be 
consistent with those of method I1 and the BEM. The numerical solutions given by 
method I suggest that the vorticity w ( 0 , l -  k) increases indefinitely as h, k + 0, 
whereas expansion (3.5) indicates that  the vorticity at this point should be bounded 
as h,k+O. 

The inaccuracy in method I can be explained as follows. From this method, 

~ ( 0 , 1 +  k )  = g ~ (  -h, 1)  +w(h,  1) + ~ ( h ,  1 + 2 k )  + O( -h, 1 +2k)}, (6.1) 
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lo(O,1+ k) I < Max (I@( -h, 1)1, Iw(h, 1)1, Iw(h, 1 +2k)l, Iw( - h, 1 + 2k)l). (6.2) 

From (3.5), however, we have 

w N - 2 A * d  cos (Be), 
and for h = k 

Iw(0,1 +k) I > max(I4-k  Iw@, 1)1, IW, 1 +24 l ,  Iw(-h, 1 + 2 w .  (6.4) 

Hence from (6.2) and (6.4) we have a contradiction. Thus substantial errors arise in 
method I from the evaluation of o(0, 1 + k), even for small h, k.  Although method I 
has been used successfully by some authors, it is clear that inaccuracies arise when 
using the method for R = 0;  indeed, further tests over a wide range of Reynolds 
numbers have shown similar conclusions. The inaccuracies in method I near the point 
S will introduce unacceptable error into such quantities as drag coefficient and length 
of attached flow. I n  this paper method I1 has been used in all calculations. 

As method I1 yielded a satisfactory result for R = 0, further investigations using 
this method are given also for both intermediate and high values of the Reynolds 
number. For all small and intermediate Reynolds numbers, solutions were obtained 
with h = k = &, $=,, & and A. At larger values of the Reynolds numbers, calculations 
were performed also with h = k = and & in order to ensure accurate results, but 
these calculations are very expensive in computer time. 

There are several ways of calculating pressure in the flow field and on the plate 
surface. In (x, y)-coordinates the Navier-Stokes equations of motion can be written 
in non-dimensional form, 

_ -  
ax R 

On the x-axis, v = 0 and therefore (6.5) becomes 

2a0 au _ -  ap - -__- 
ax Ray ax u-, 

which on integration gives 

p(0  - , 0) = - - - (x,O) dX-$'(O - , 0) + +'( - co , 0). x,: 
Using (2.11u), ( 2 . 1 2 ~ )  and ( 2 . 1 3 ~ )  we have 

and since u( - o 0 , O )  = 1 and u(0- , 0) = 0 we obtain 

Along the plate OX, u = 0 and v = 0 and therefore (6.6) becomes 

(6.10) 

(6.11) 
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which  on integration gives 

In a similar manner, the pressure on the downstream surface reduces to 

where 
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(6.12) 

(6.13) 

(6.14) 

Formulae (6.12) and (6.13) are evaluated numerically using Simpson’s rule. The 

D = pVH, C ,  (6.15) 

drag D on the plate may be expressed as 

in terms of the non-dimensional drag coefficient C,, which can be evaluated from 

(6.16) 
J o  

Integrating by parts, 

Because of the singularity a t  S, where the vorticity and vorticity gradient are 
unbounded, a special treatment is needed in the neighbourhood of the singularity. 
Using Moffatt’s (1964) expansion, a modified formula can be obtained: 

(6.18) 

I n  order to check the accuracy, the following alternative formula for C, may be used : 

(6.19) 

Evaluations of C,  using these two methods gives a consistency check on the solution. 
Two sets of solutions for C, were obtained and found to be in very good agreement. 

The upstream and downstream positions at which the infinity boundary conditions 
were applied, xL and &, were varied for each Reynolds number. Values of xL and 6, 
have been taken sufficiently large so that any further increase produces only a 
negligible change in all flow quantities evaluated when using the finest mesh and in 
the extrapolated results. In  practice i t  was found that the results for the wake length 
L were not too sensitive to the exact location EB. For example, in the case R = 100, 
the results for L using (xL,tR) = (-2,4), ( -2 ,6 )  and ( -3 ,6 )  were in very good 
agreement. However, the results for the drag coefficients C, were found to be more 
sensitive to the effects of boundary locations and in the above example they can be 
estimated correctly only to within about 10% for the smaller region. 

Figure 3 shows the variation of vorticity on the upstream and downstream faces 
of the plate using several mesh sizes for R = 10, 100 and 500. It is seen that as the 
mesh size tends to zero the results appear to be converging to a solution, although 
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W ( 0  - 7 v) 
4 - 15 
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' Y  
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k W ( O + , Y )  

FIGURE 3. Mesh size influence on the vorticity distribution on the surface of the plate: (a) R = 10, 
with h = k = &, &, and &; (b) R = 100, (c) R = 500, with h = k = &, h a n d  $. V, A; 0,  &; x , &; 
0,  &. These results were obtained by method 11.. 

FIGURE 4 ( a d ) .  Streamlines for (a) R = 1 (the values of stream functions, starting from the top, are 
= 2.0. 1.6, 0.8, 0.4, 0.2, 0.1, 0.02, 0.002; enclosed stream functions, starting from the centre, are 
= -0.0004,O) ; ( b )  R = 10 (the values of stream functions, starting from the top, are $ = 2.0, 1.6, 

0.8,0.4,0.2,0.1,0.0!2; enclosed streamlines, starting from the centre, are $ = -0.06, -0.04, -0.02, 
0) ; (c )  R = 100 ; (d )  R = 500 (in the last two cases, the values of stream functions, starting from the 
top, are + = 2.0, 1.6, 0.8, 0.4, 0.2, 0.1, 0.02; enclosed streamlines, starting from the centre, are 
~ = -0.3, -0.2, -0.1, 0). (e-h) Equivorticity lines for (e) R = 1; (f) 10; (9) 100; (h) 500. 
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FIGURE 4(a-h). For caption see facing page. 
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some inaccuracies still exist on the upstream face near the singularity especially a t  
the larger values of Reynolds number. 

The flow streamlines and equivorticity lines for R = 1, 10, 100 and 500 are 
presented in figure 4, and the vorticity on the surface of the plate is shown in figure 5 
using the results on the finest grids. It is noted that the magnitudes of the vorticity 
gradients in the present work are similar to  those obtained by Fornberg (1980, 1985) 
when solving the steady flow past a circular cylinder. 

A series of experiments has been carried out in which the trolley (and hence the 
cascade) is initially accelerated rapidly to uniform speed U which is then maintained 
over the greater part of the tank, and is finally accelerated negatively to rest. The 
range of velocities (0.0005 to 0.5 m s-l) and length of tank used are such that the flow 
has become essentially steady before the point at which it is photographed. Figure 6 
shows a set of 4 s  time exposures showing the motion of the polystyrene marker 
spheres in a thin horizontal illuminated section a t  mid-level in the tank. The cases 
illustrated are ( a )  for R = 4.0 in ethylene glycol, ( b )  for R = 8.3 in ethylene glycol, ( c )  
for R = 17.9 in water, and ( d )  for R = 22.2 in ethylene glycol. To the left of each 
experimental photograph is a streamline field obtained numerically for that Reynolds 
number, and it may be seen that the numerical and experimental realizations are in 
excellent broad agreement despite additional constraints in the laboratory 
experiment due to the side walls and floor of the channel and to the free surface of 
the liquid. The region of flow shown in the photographs is 0.04 m from the sidewalls 
and 0.06 m from both the free surface and bottom of the tank, and the character of 
the flow (which is from left to right relative to the cascade plates) is shown clearly. 
In  each case, the flow separates from the edges of the plates forming an attached 
bubble consisting of a vortex pair. The diagonal pattern is caused by the use of light 
sources slanting rearwards to the left and forwards to the right ; these produce bright 
diagonal bands where the marker particles are illuminated by both sources, and 
darker bands of roughly half the intensity where one beam is obstructed by a tooth 
of the cascade. However, the illumination is sufficient to resolve the pattern of flow. 
A better system of illumination will be used in future experiments. 

I n  order to  cover as wide a range of flows as possible and to  show that the scaling 
used has been appropriate, the cascade was run in water and in ethylene glycol over 
the Reynolds-number range of about 0.1 to 22. These limits were imposed by the 
format of the experiment, as below 0.1 i t  proved difficult to drive the trolley 
smoothly with the motor gearbox configuration available, while above 22 the flow 
started to show signs of unsteadiness. The full set of experimental results is presented 
in figure 7, in which the non-dimensional length of the attached flow behind cascade 
teeth measured in terms of the width of a tooth is plotted against Reynolds number, 
Measurements in water are shown by stars (*), and those in ethylene glycol by 
triangles (A). It is observed that as the Reynolds number increases so does the length 
of the recirculating eddy behind the plate and this is in agreement with the numerical 
results presented in figure 4. 

Table 1 gives the eddy length, L,  as obtained by the numerical calculations for 
different mesh sizes and those obtained using repeated h2-extrapolations on 
consecutive mesh sizes for several values of the Reynolds number, whilst figure 8 
shows the variation of the length of the eddy a t  Reynolds numbers 100,200 and 500 
as functions of h and h2. It is observed for R d 200 that h2-extrapolation of the results 
is justified, but for R = 500 i t  is not. Although the basic finite-difference scheme used 
is second-order accurate in the limit of infinitesimal steps, if the steps used are not 
small compared with the inverse of the Reynolds number, then the ‘upwinding’ 
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FIGURE 5. Vorticity distribution on the surface of the plate for (a) R = 1, 5, 10, and 20; 

( b )  R = 50, 100, 200, 500. 
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FIGURE 6. Comparison of calculated and experimental streamlines for (a) R = 4.0; (b)  8.3; (c )  17.9; 
(d) 22.2. The experimental results of (a, b, d )  were obtained by using ethylene glycol whilst for (c) 
pure water was used. 
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FIGURE 7. Comparison of theoretical, numerical and experimental results for non-dimensional eddy 
length against Reynolds number. 0,  Present numerical results; A, experimental results in 
ethylene glycol; *, experimental results in pure water; -, Smith (1985a); ---, Milos & Acrivos 
(1986), Milos et al. (1987). 

R 1 5 10 20 50 100 

XL -10 -10 -6 -6 -6 -2 
5, 2 2 4 4 4 6 
h = k = L  0.234 1.085 2.049 3.898 - - 
h = k =  v 1 0.258 1.107 2.092 3.998 9.728 19.09 
h = k = L  30 0.259 1.113 2.101 4.024 9.882 19.75 
h = k = L  40 0.260 1.116 2.104 4.034 9.958 20.02 
h = k = L  - - - - 9.998 20.14 
h = k = &  - - - 

Extrapolation 0.261 1.119 2.108 4.048 10.078 20.36 
Smith ( 1985 a) 0.20 1.00 2.00 4.00 10.00 20.00 

10 

60 
- - - 

TABLE 1. Values of the attached eddy length L. 

200 500 

-2 -2 
6 6 
- - 

36.09 82.22 
38.51 88.73 
39.77 93.59 
40.43 97.07 
40.77 99.40 
41.26 104.96 
40.00 100.00 

amounts to inclusion of artificial viscosity which cannot be separated from the real 
viscositv. Thus the extrmolated results at R = 500 should be used with caution. 

The rksults for the eddy length L,  which are given in table 1, suggest that for large 

L - 0.21R, (6.20) 
Reynolds numbers 

whereas the theoretical results on the related problem of Smith (1985~)  gives 

L - 0.20R. (6.21) 

It should be noted that the laboratory measurements do exhibit some scatter and 
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FIGURE 8. The variation of the eddy length as a function of h and h' for (a )  R = 100; 
( b )  200; (c) 500. 

lie systematically under the numerical and theoretical solutions, but taking account 
of the difficulty in identifying the stagnation point marking the end of the attached 
flow our laboratory results provide striking support for our numerical solution. Thus 
both our numerical and experimental results provide support for an approximately 
linear dependence of relative attached flow length on Reynolds number, although it 
may be noted that the dependence is not quite linear at low Reynolds numbers. The 
final comparison made in figure 7 is with the numerical results of Milos & Acrivos 
(1986) and Milos et al. (1987) (broken line) who studicd the related problems of 
laminar flow over a backward-facing step on one side of a two-dimensional channel. 
From their boundary-layer solutions (1986) and Navicr-Stokes solutions (1987), we 
find the following formula: 

L - 0.18R, (6.22) 

in the present notation, and it is observed from figure 7 that the agreement with the 
present numerical and experimental work is favourable. 

Figure 9 shows the h2-extrapolated values of the x- and y-components of velocity 
a t  x = 0, u(0, y) and w(0, y) respectively, as a function of y at Reynolds numbers 1, 
10, 100 and 500. It is observed that as the Reynolds number increases the x- 
component of velocity approaches the asymptotic profile used by Smith (1985a) but 
the y-component of the velocity does not. I n  fact as the Reynolds number increases 
this component of velocity increases, rather than tending to zero, which results in 
(avlay) (0, y) increasing over much of the range 1 < y < 2.  From the continuity 
equation we deduce that (a/ax)u(O, y)  does not tend to zero, which is again a 
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FIGURE 9. The x- and y-components of velocity at 5 = 0 for (a) R = 1, (b) 10, ( c )  100 and (d) 500. 

R 1 5 to 20 50 100 

XL -10 -10 
5, 2 2 
h = k = L  10 17.70 4.177 
h = k = L  20 17.91 4.213 
h = k = L  30 17.99 4.228 
h = k = L  40 18.03 4.236 
/ & = k = L  ~ - 
h = k = L  - 
Extrapolation 18.11 4.232 

50 

60 
~ 

-6 - 
4 
2.808 
2.815 
2.820 
2.823 

- 
2.830 

-6 
4 
2.292 
2.265 
2.261 
2.260 

- 

2.260 

-6 -2 
4 6 

2.083 2.200 
2.055 2.092 
2.044 2.055 
2.036 2.036 

2.012 1.996 

- - 

- - 

TABLE 2. Values of the drag coefficient C,. 

200 

-2 
6 

2.648 
2.335 
2.206 
2.144 
2.106 
1.989 

- 

500 

-2 
6 

2.729 
2.595 
2.495 
2.416 
2.344 
1.973 

- 

boundary condition frequently used when solving the related problems. The 
generation of the non-zero y-component of velocity at x = O  is not unexpected 
because as the Reynolds number increases the flow does not know of the existence 
of the plates until it gets quite close to them. This results in a large y-component of 
the velocity near the upstream surface of the plates, see figure 4 (a) ,  and this flow has 
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t20 be brought to rest a t  y = 2. Thus the good agreement obtained between the 
present investigation and those of Smith, Acrivos etc. could not be foreseen as the 
problems studied are quite distinct. 

Results for the drag coefficient derived from (6.18) are presented in table 2. It may 
be seen that a t  small values of R the values of C ,  can be predicted very accurately, 
whereas a t  the large values, say 200 and 500, C, can be estimated only to within a 
few per cent. One reason is that inaccuracies occur on the upstream face near the 
singularity point, S ,  a t  larger values of R,  as may be seen from figure 3. 

The authors would like to thank Professor F. T. Smith for bringing this problem 
to their attention and for the numerous constructive comments he has made on 
several aspects of the work. Further the paper has been substantially improved by 
the comments of the referees. Also Terry Long of the Monash Geophysical Fluid 
Dynamics Laboratory has made a significant contribution to the experimental side 
of this work and it is a pleasure to place on record our high regard for his 
resourcefulness and support. One of the authors (T.T.) acknowledges with thanks the 
financial support provided by the University of Leeds. 
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